Skip to Main Content

Oracle Machine Learning Office Hours

Free tips and training every month! Subscribe for reminders and more from Office Hours. FAQ

Header container

May 18

15:00 - 16:00 UTC    Start Times Around the World

Description

Hands-On Lab using Oracle Machine Learning Services on Autonomous Database
In this Hands on Lab, join us to experience Oracle Machine Learning Services on Oracle Autonomous Database.

OML Services extends OML functionality to support model deployment and model lifecycle management for both in-database OML models and third-party Open Neural Networks Exchange (ONNX) machine learning models via REST APIs.

The REST API for Oracle Machine Learning Services provides REST API endpoints hosted on Oracle Autonomous Database. These endpoints enable the storage of machine learning models along with its metadata, and the creation of scoring endpoints for the model.

These third-party classification or regression models can be built using tools that support the ONNX format, which includes packages like Scikit-learn and TensorFlow, among several others.

In addition, OML Services supports proprietary cognitive text capabilities, with capabilities for topic discovery, keywords, summary, sentiment, and feature extraction. The initial languages supported include English, Spanish, and French (based on a Wikipedia knowledgebase using embeddings).

OML Services cognitive image functionality, supported through the ONNX format third-party model deployment feature, supports scoring using images or tensors.

Your Experts

Marcos Arancibia
Marcos Arancibia, Product Manager, Data Science and Big Data    
Marcos Arancibia is the Product Manager for Oracle Data Science and Big Data. He works with Machine Learning in the Oracle Database and on Big Data clusters under Hadoop and Spark, on premises and in the Oracle Cloud. He works within Product Management to develop product strategy, roadmap prioritization, product positioning and product evangelization, working closely with the engineering team in defining the product roadmaps for Oracle Machine Learning and Big Data in the Cloud. Before joining Oracle 9 years ago he was at SAS Institute Inc. for 13 years as a Data Mining architect and expert in the US and Latin America. He holds a Bachelor Degree of Science in Statistics with additional courses in the Master of Science in Statistics, both from UNICAMP in Brazil. He has Certifications from Stanford on AI and Machine Learning, and from the University of Washington on Computational Neuroscience. He is an expert on Deep Learning and passionate about Machine Learning.
Mark Hornick
Mark Hornick, Senior Director, Product Management, Data Science and Machine Learning    
Mark Hornick is the Senior Director of Product Management for the Oracle Machine Learning (OML) family of products. He leads the OML PM team and works closely with Product Development on product strategy, positioning, and evangelization, Mark has over 20 years of experience with integrating and leveraging machine learning with Oracle technologies, working with internal and external customers in the application of Oracle’s machine learning technologies for scalable and deployable data science projects. Mark is Oracle’s representative on the R Consortium’s Board of Directors, an Oracle Adviser and founding member of the Business Intelligence Warehousing and Analytics (BIWA) User Community, and Content Selection Committee Chair for the Analytics and Data Summits.
Sherry LaMonica
Sherry LaMonica, Principal Member of Technical Staff, Oracle Machine Learning Product Management
Sherry is a member of the Oracle Machine Learning Product Management team. She has 20 years of software experience focused on enabling the commercial use of the open-source data analysis software system R for data science projects. She has worked with customers in fields as diverse as as pharmaceutical research, financial analysis, manufacturing and healthcare IT.