create table t ( x int primary key ) organization index;
but, that is probably not what you meant. Here is a short excerpt from Expert Oracle Database Architecture:
<quote>
Index Organized Tables
Index organized tables (IOTs) are quite simply tables stored in an index structure. Whereas a table stored in a heap is unorganized (i.e., data goes wherever there is available space), data in an IOT is stored and sorted by primary key. IOTs behave just like "regular" tables do as far as your application is concerned; you use SQL to access them as normal. They are especially useful for information retrieval, spatial, and OLAP applications.
What is the point of an IOT? You might ask the converse, actually: what is the point of a heap organized table? Since all tables in a relational database are supposed to have a primary key anyway, isn't a heap organized table just a waste of space? We have to make room for both the table and the index on the primary key of the table when using a heap organized table. With an IOT, the space overhead of the primary key index is removed, as the index is the data, and the data is the index. The fact is that an index is a complex data structure that requires a lot of work to manage and maintain, and the maintenance requirements increase as the width of the row to store increases. A heap, on the other hand, is trivial to manage by comparison. There are efficiencies in a heap organized table over an IOT. That said, IOTs have some definite advantages over their heap counterparts. For example, I remember once building an inverted list index on some textual data (this predated the introduction of interMedia and related technologies). I had a table full of documents, and I would parse the documents and find words within them. I had a table that then looked like this:
create table keywords
( word varchar2(50),
position int,
doc_id int,
primary key(word,position,doc_id)
);
Here I had a table that consisted solely of columns of the primary key. I had over 100 percent overhead; the size of my table and primary key index were comparable (actually, the primary key index was larger since it physically stored the rowid of the row it pointed to, whereas a rowid is not stored in the table-it is inferred). I only used this table with a WHERE clause on the WORD or WORD and POSITION columns. That is, I never used the table-I used only the index on the table. The table itself was no more than overhead. I wanted to find all documents containing a given word (or "near" another word, and so on). The heap table was useless, and it just slowed down the application during maintenance of the KEYWORDS table and doubled the storage requirements. This is a perfect application for an IOT.
Another implementation that begs for an IOT is a code lookup table. Here you might have ZIP_CODE to STATE lookup, for example. You can now do away with the heap table and just use an IOT itself. Anytime you have a table that you access via its primary key exclusively, it is a candidate for an IOT.
...
The same would be true if you frequently use BETWEEN queries on a primary or unique key. Having the data stored physically sorted will increase the performance of those queries as well. For example, I maintain a table of stock quotes in my database. Every day, for hundreds of stocks, I gather together the stock ticker, date, closing price, days high, days low, volume, and other related information. The table looks like this:
ops$tkyte@ORA10GR1> create table stocks
2 ( ticker varchar2(10),
3 day date,
4 value number,
5 change number,
6 high number,
7 low number,
8 vol number,
9 primary key(ticker,day)
10 )
11 organization index
12 /
Table created.
I frequently look at one stock at a time for some range of days (e.g., computing a moving average). If I were to use a heap organized table, the probability of two rows for the stock ticker ORCL existing on the same database block are almost zero. This is because every night, I insert the records for the day for all of the stocks. That fills up at least one database block (actually, many of them). Therefore, every day I add a new ORCL record, but it is on a block different from every other ORCL record already in the table. If I query as follows:
Select * from stocks
where ticker = 'ORCL'
and day between sysdate-100 and sysdate;
Oracle would read the index and then perform table access by rowid to get the rest of the row data. Each of the 100 rows I retrieve would be on a different database block due to the way I load the table-each would probably be a physical I/O. Now consider that I have this same data [NL19]in an IOT. That same query only needs to read the relevant index blocks, and it already has all of the data. Not only is the table access removed, but all of the rows for ORCL in a given range of dates are physically stored "near" each other as well. Less logical I/O and less physical I/O is incurred.
</quote>